
kappa Documentation
Release 0.4.0

Mitch Garnaat

March 13, 2016

Contents

1 Why kappa? 3

2 The Config File 5
2.1 Example . 5

3 Commands 7
3.1 deploy . 7
3.2 delete . 7
3.3 invoke . 8
3.4 tag . 8
3.5 tail . 8
3.6 test . 8
3.7 event_sources . 8
3.8 status . 8

4 Indices and tables 9

i

ii

kappa Documentation, Release 0.4.0

Contents:

Contents 1

kappa Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Why kappa?

You can do everything kappa does by using the AWS Management Console so why use kappa? Basically, because
using GUI interfaces to drive your production environment is a really bad idea. You can’t really automate GUI
interfaces, you can’t debug GUI interfaces, and you can’t easily share techniques and best practices with a GUI.

The goal of kappa is to put everything about your AWS Lambda function into files on a filesystem which can be easily
versioned and shared. Once your files are in git, people on your team can create pull requests to merge new changes
in and those pull requests can be reviewed, commented on, and eventually approved. This is a tried and true approach
that has worked for more traditional deployment methodologies and will also work for AWS Lambda.

3

kappa Documentation, Release 0.4.0

4 Chapter 1. Why kappa?

CHAPTER 2

The Config File

The config file is at the heart of kappa. It is what describes your functions and drives your deployments. This section
provides a reference for all of the elements of the kappa config file.

2.1 Example

Here is an example config file showing all possible sections.

1 ---
2 name: kappa-python-sample
3 environments:
4 env1:
5 profile: profile1
6 region: us-west-2
7 policy:
8 resources:
9 - arn: arn:aws:dynamodb:us-west-2:123456789012:table/foo

10 actions:
11 - "*"
12 - arn: arn:aws:logs:*:*:*
13 actions:
14 - "*"
15 event_sources:
16 -
17 arn: arn:aws:kinesis:us-west-2:123456789012:stream/foo
18 starting_position: LATEST
19 batch_size: 100
20 env2:
21 profile: profile2
22 region: us-west-2
23 policy_resources:
24 - arn: arn:aws:dynamodb:us-west-2:234567890123:table/foo
25 actions:
26 - "*"
27 - arn: arn:aws:logs:*:*:*
28 actions:
29 - "*"
30 event_sources:
31 -
32 arn: arn:aws:kinesis:us-west-2:234567890123:stream/foo
33 starting_position: LATEST
34 batch_size: 100

5

kappa Documentation, Release 0.4.0

35 lambda:
36 description: A simple Python sample
37 handler: simple.handler
38 runtime: python2.7
39 memory_size: 256
40 timeout: 3
41 vpc_config:
42 security_group_ids:
43 - sg-12345678
44 - sg-23456789
45 subnet_ids:
46 - subnet-12345678
47 - subnet-23456789

Explanations:

Line
Number

Description

2 This name will be used to name the function itself as well as any policies and roles created for use by
the function.

3 A map of environments. Each environment represents one possible deployment target. For example,
you might have a dev and a prod. The names can be whatever you want but the environment names
are specified using the –env option when you deploy.

5 The profile name associated with this environment. This refers to a profile in your AWS credential file.
6 The AWS region associated with this environment.
7 This section defines the elements of the IAM policy that will be created for this function in this

environment.
9 Each resource your function needs access to needs to be listed here. Provide the ARN of the resource

as well as a list of actions. This could be wildcarded to allow all actions but preferably should list the
specific actions you want to allow.

15 If your Lambda function has any event sources, this would be where you list them. Here, the example
shows a Kinesis stream but this could also be a DynamoDB stream, an SNS topic, or an S3 bucket.

18 For Kinesis streams and DynamoDB streams, you can specify the starting position (one of LATEST
or TRIM_HORIZON) and the batch size.

35 This section contains settings specify to your Lambda function. See the Lambda docs for details on
these.

6 Chapter 2. The Config File

CHAPTER 3

Commands

Kappa is a command line tool. The basic command format is:

kappa [options] <command> [optional command args]

Available options are:

• –config <config_file> to specify where to find the kappa config file. The default is to look in kappa.yml.

• –env <environment> to specify which environment in your config file you are using. The default is dev.

• –debug/–no-debug to turn on/off the debug logging.

• –help to access command line help.

And command is one of:

• deploy

• delete

• invoke

• tag

• tail

• event_sources

• status

Details of each command are provided below.

3.1 deploy

The deploy command does whatever is required to deploy the current version of your Lambda function such as
creating/updating policies and roles, creating or updating the function itself, and adding any event sources specified in
your config file.

When the command is run the first time, it creates all of the relevant resources required. On subsequent invocations, it
will attempt to determine what, if anything, has changed in the project and only update those resources.

3.2 delete

The delete command deletes the Lambda function, remove any event sources, delete the IAM policy and role.

7

kappa Documentation, Release 0.4.0

3.3 invoke

The invoke command makes a synchronous call to your Lambda function, passing test data and display the resulting
log data and any response returned from your Lambda function.

The invoke command takes one positional argument, the data_file. This should be the path to a JSON data file
that will be sent to the function as data.

3.4 tag

The tag command tags the current version of the Lambda function with a symbolic tag. In Lambda terms, this creates
an alias.

The tag command requires two additional positional arguments:

• name - the name of tag or alias

• description - the description of the alias

3.5 tail

The tail command displays the most recent log events for the function (remember that it can take several minutes
before log events are available from CloudWatch)

3.6 test

The test command provides a way to run unit tests of code in your Lambda function. By default, it uses the nose
Python testrunner but this can be overridden my specifying an alternative value using the unit_test_runner
attribute in the kappa config file.

When using nose, it expects to find standard Python unit tests in the _tests/unit directory of your project. It will
then run those tests in an environment that also makes any python modules in your _src directory available to the
tests.

3.7 event_sources

The event_sources command provides access the commands available for dealing with event sources. This
command takes an additional positional argument, command.

• command - the command to run (list|enable|disable)

3.8 status

The status command displays summary information about functions, stacks, and event sources related to your
project.

8 Chapter 3. Commands

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

	Why kappa?
	The Config File
	Example

	Commands
	deploy
	delete
	invoke
	tag
	tail
	test
	event_sources
	status

	Indices and tables

